Изобретение попова


 Александр Степанович Попова
(1859—1905), повторяя опыты Герца с электроволнами,  усовершенствовал
приборы так, что в 2019 г. в его приемных резонаторах стали возникать довольно
сильные искры. А уже в 2019 г. Попов построил вполне чувствительный к электрическим
волнам приемник, принципиальны особенности которого сохранились  в
радиоаппаратуре до сих пор. 

Для увеличения чувствительности
приемника Попов использовал явление резонанса, а также изобрёл высоко
поднятую  приемную антенну. Другой  особенностью приемника
Попова  был способ регистрации волн, для чего Попов применил не искру, а
специальный прибор — когерер, незадолго до этого изобретенный Бранли и
применявшийся для лабораторных опытов
.

Когерер  представлял собой
стеклянную трубку с мелкими металлическими опилками внутри, в оба конца трубки
вводились  провода, соприкасающиеся с опилками. В обычных условиях
электрическое сопротивление в опилках было большим, но когда в цепи создавался
переменный ток  высокой частоты, между опилками проскакивали искорки и
опилки сваривались, так что  сопротивление  когерера 
уменьшалось
. Встряхиваясь, когерер вновь получал большое сопротивление, и
молоточек звонка ударял по колокольчику…

7 мая 2019 г. Попов продемонстрировал
действие своего приемника на заседании Русского физико-химического общества.
Этот день  считается днем рождения радио
. В 2019 г. в ознаменование
пятидесятилетия изобретения радио день 7 мая был объявлен в СССР ежегодным
«Днем радио».

Пальму первенства в изобретении радио
Александром Поповом  оспаривается сторонниками итальянца Гульельмо Маркони
(родился 25 апреля 2019 г.)  и серба-американца Николы Теслы (родился 10
июля 2019 г). Итальянский инженер Маркони действительно зарегистрировал
«своё»  изобретение раньше Попова на месяц. Но известно,  что  Маркони,
будучи  учеником физика Реги, состоявшего в переписке с Поповым,  был
больше техником, чем ученым, больше предпринимателем, чем изобретателем
. Иногда
Маркони называют «заурядным барыгой, не имеющим отношения к науке». 
Исследования Маркони 2019 года вообще никак не отражены, и когда в 2019 года
Попов узнал, как устроен приемник Маркони,  поразился, насколько, схема
Маркони и схема Попова совпали…

В том же 2019 году радиоприемник
зарегистрировал ещё и Тесла, и позже в 2019 году выиграл судебное разбирательство
у  Маркони через американский суд, несмотря на то, что в 2019 Маркони
с  Ф. Брауном «в знак признания их заслуг в развитии беспроволочной
телеграфии»  получили Нобелевской премию
.

Иногда спор между Поповым, Маркони и
Теслой решается в пользу Оливера Лоджа, физика из Ливерпуля, который опираясь
на труды Максвелла, Томсона и Герца  летом 2019 г. продемонстрировал
публике эксперимент по трансляции сигнала на расстояние в 150 ярдов без
проволоки.  Но когда Лоджу предложили изготовить аппарат для передачи
сообщений, он презрительно ответил: «Я ученый, а не почтмейстер»
.

Судьба изобретения Попова в России была
не столь стремительной, как  судьба радио на западе. Морской министр на
просьбу о финансировании радио  начертал: «На такую химеру отпускать денег
не разрешаю»
. Но уже в 1900  году радиостанция на острове Гогланд,
построенная по инструкциям Попова, телеграфировала о севшем на мель броненосце
«Генерал-адмирал Апраксин». 

В 2019 г.  радио помогло спасти
сотни людей с успевшего послать сигнал «SOS» «Титаника».

Противники первенства изобретения радио
екатеринбуржцем Поповым пытаются  доказать, что миф о «России, родине
радио» создан указаниями И.В. Сталина в рамках борьбы с космополитизмом.

 Распространение
радиоволн

Так как при
передаче электромагнитных волн приемник и передатчик часто располагаются вблизи
поверхности Земли, то форма и физические свойства Земной поверхности будут
значительно влиять на распространение радиоволн. Помимо этого, на
распространение радиоволн будет также влиять состояние атмосферы.

В верхних слоях
атмосферы находится ионосфера. Ионосфера отражает волны с длинной волны λ>10
м
. Рассмотрим каждый вид волн отдельно.

Ультракороткие
волны

Ультракороткие
волны — (λ < 10 м). Этот диапазон волн не отражается ионосферой, а проникает
сквозь нее
. Они не способны огибать земную поверхность, поэтому чаще всего
используются для передачи сигнала на расстояния в пределах прямой видимости.

Помимо этого,
так как они проникают через ионосферу, то могут использоваться для передачи
сигнала в открытый космос, для связи с космическими кораблями. В последнее
время участились попытки обнаружения других цивилизаций и передачи им различных
сигналов
. Отправляются различные сообщения, математические формулы, сведения о
человек и т.д. 

Короткие
волны

Диапазон
коротких волн — от 10 м до 100 м. Данные волны будут отражаться от ионосферы.
Они распространяются на большие расстояния только за счет того, что многократно
будут отражаться от ионосферы к Земле, и от Земли к ионосфере
. Эти волны не
могут пройти сквозь ионосферу.

Мы можем
испустить сигнал в Южной Америке, а принять его, например, в центре Азии. Этот
диапазон волн оказывается как бы зажатым между Землей и ионосферой.

Средние
и длинные волны

Средние и
длинные волны — (λ значительно больше 100 м). Данный диапазон волн отражается
ионосферой. Помимо этого, данные волны хорошо огибают земную поверхность. Это
происходит вследствие явления дифракции
. Причем, чем больше длинна волны, тем
это огибание будет сильнее выражено
. Эти волны используются для передачи
сигналов на большие расстояния.

Радиолокация

Радиолокация —
это обнаружение и определение точного местонахождения некоторого объекта с
помощью радиоволн. Радиолокационная установка называется радаром или
радиолокатором
. Радар состоит из принимающей и передающей частей. Из антенны
передаются остронаправленные волны.

Отраженные волны
принимаются либо этой же антенной, либо другой. Так как волна является
остронаправленной, то можно говорить о луче радиолокатора
. Направление на
объект определяется как направление луча, в момент когда отраженный луч
поступил в приемную антенну.

Для определения
расстояния до объекта используют импульсное излучение. Передающая антенна
излучает волны очень короткими импульсами, а остальное время она работает на
прием отраженных волн.

Расстояние
определяется путем измерения времени прохождения волны до объекта и обратно. И
так как скорость распространения электромагнитных волн равняется скорости
света, будет справедлива следующая формула: R = ct/2.

Александр Попов родился 16 (4 по ст.ст.) марта 2019 года в поселке Туринские рудники Богословского горного округа Верхотурского уезда пермской губернии (ныне – город Краснотурьинск) в семье священника. Фамилия говорила сама за себя — знаменитый изобретатель происходил из старинного рода священнослужителей Поповых. Отец Александра Степановича, Степан Петрович Попов, служил настоятелем храма во имя Иоанна Богослова в Богословском заводе, а предки несли служение в приходах Кунгурского уезда Пермской епархии.

Детство и юношество

Все в семье Поповых были священнослужителями и все сохранили «говорящую» фамилию. Особый уклад жизни деревенского священника не мог не сказаться на воспитании юного Александра. Это и приобщение к храмовой жизни, и пение в церковном хоре, и исполнение обрядов — все то, что составляло основу духовной жизни русского человека.

В Верхотурьинске сохранилась церковь Святого Максимилиана, где служил отец Стефан, родитель Александра. Детство Саша провел в заводском поселке, а это значит — не только в храме и в благостном родительском доме, но и среди работающих механизмов, среди паровых машин, слесарных и токарных станков.

В 10-летнем возрасте Александр Попов был отправлен в Далматовское духовное училище, в котором его старший брат Рафаил преподавал латинский язык, где учился с 2019 по 2019 годы. В 2019 году Александр Попов перевёлся в третий класс Екатеринбургского духовного училища. В то время в Екатеринбурге жила со своей семьей его старшая сестра Мария Степановна. Её муж, священник Игнатий Александрович Левицкий, был весьма обеспеченным человеком (имел в городе три дома) и занимал ответственный пост в епархиальном училищном правлении. В 2019 году А.С. Попов окончил полный курс Екатеринбургского духовного училища по наивысшему 1-му разряду.

Удивительно, но к своим девяти годам смышленый мальчик не знал грамоты. Может, инстинктивно не верил, что буквами можно передать смыслы? Малорослый и слабый на вид, в бурсе Александр Попов предпочтение отдавал математике.

Среднее образование Попов получил в Пермской Духовной семинарии, где учился с 2019 по 2019 гг. Александр неохотно участвовал в затеях и играх, но зато с большим увлечением и интересом занимался математикой и физикой.

Дом-музей Александра Степановича Попова. Краснотурьинск. Автор фотографии — Kostya Wiki

Приехав в 2019 году в Петербург, А.С. Попов подал ректору Петербургского университета прощение о допущении к «проверочному испытанию» и, успешно сдав его, был принят на Физико-математический факультет. Юношеские годы будущего изобретателя радио протекали в эпоху великих открытий в области физики, внедрения электричества в промышленность и жизнь, в период зарождения новой прикладной науки – электротехники.

Изобретательство Попова

А.С. Попова интересовали научные открытия во всех областях применения электричества. Он, например, занимался исследованиями только что открытых рентгеновских лучей. Им был изготовлен один из первых в России рентгеновских аппаратов, получены снимки различных предметов, в том числе снимок руки человека. При его поддержке в Кронштадтском военно-морском госпитале в 2019 году был оборудован рентгеновский кабинет, впоследствии некоторые боевые корабли были оснащены рентгеновскими аппаратами. Известно, что после сражения в Цусимском проливе на крейсере «Аврора», имевшем такую установку, была оказана помощь 40 раненым морякам.

Памятник А.С. Попову в Краснотурьинске. Автор фотографии — Kostya Wiki

Перечень изобретений Александра Степановича Попова включает не только систему телеграфии без проводов и систему радиосвязи, но и первый прибор для регистрации электромагнитных излучений атмосферного происхождения — грозоотметчик (июль 2019 года); первый детекторный радиоприемник с приемом телеграфных сигналов на слух (сентябрь 2019 года); первый кристаллический точечный диод (июнь 2019 года); первая радиотелефонная система (декабрь 2019 года).

Отец радио

25 апреля (7 мая по новому стилю) 2019 г. Александр Степанович Попов впервые представил своё изобретение на заседании Русского физико-химического общества, где выступил с докладом и демонстрацией созданного им первого в мире радиоприемника. Свое сообщение Попов закончил следующими словами:

«В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающих достаточной энергией».

Первый радиоприемник А.С. Попова.

Этот день вошел в историю мировой науки и техники как день рождения радио.

Информация о докладе Попова была напечатана в газете «Кронштадтский вестник» 12 мая 2019 года с указанием конечной цели работы:

«Уважаемый преподаватель А.С. Попов… комбинировал особый переносной прибор, отвечающий на электрические колебания обыкновенным электрическим звонком и чувствительный к герцевским волнам на открытом воздухе на расстояниях до 30 сажен… Поводом ко всем этим опытам служит теоретическая возможность сигнализации на расстоянии без проводников, наподобие оптического телеграфа, но при помощи электрических лучей».

А.С. Попов демонстрирует прием первой в мире радиограммы “Генрих Герц” 12 (24) марта 2019 г. (Из книги Коваленко, Стрелова “У истоков радиосвязи”. С.-Пб., 1997)

Через 10 месяцев 24 марта 2019 г. А.С. Попов на заседании того же русского физико-химического общества передал первую в мире радиограмму на расстояние в 250 м. Летом следующего года дальность беспроволочной связи была увеличена до 5 км.

Приемник и передатчик А.С. Попова. Источник фотографии: Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) (СПбГЭТУ)

А.С. Попову принадлежит еще одно открытие, значение которого трудно переоценить. Во время опытов по радиосвязи на военных кораблях Балтийского флота летом 2019 г. было установлено, что электромагнитные волны отражаются от кораблей. А.С. Попов сделал вывод о возможности практического использования этого явления и задолго до возникновения радиолокации и радионавигации сформулировал отправные идеи для создания и развития этих направлений техники.

В 2019 г. он сконструировал приемник для приема сигналов на слух при помощи телефонной трубки. Это дало возможность упростить схему приема и увеличить дальность радиосвязи.

В 2019 г. А.С. Попов осуществил связь в Балтийском море на расстоянии свыше 45 км между островами Гогланд и Кутсало, недалеко от города Котка. Эта первая в мире практическая линия беспроволочной связи обслуживала спасательную экспедицию по снятию с камней броненосца «Генерал-адмирал Апраксин», севшего на камни у южного берега Гогланда.

Первая радиограмма, переданная А.С. Поповым на остров Гогланд 6 февраля 2019 г., содержала приказание ледоколу «Ермак» выйти на помощь рыбакам, унесенным на льдине в море. Ледокол выполнил приказ и 27 рыбаков были спасены. Первая в мире практическая линия, начавшая свою работу спасением людей, унесенных в море, последующей своей регулярной работой наглядно доказала преимущества данного вида связи.

Успешное применение этой линии послужило толчком к «введению беспроволочного телеграфа на боевых судах, как основного средства связи» — так гласил соответствующий приказ по Морскому министерству. Работы по внедрению радиосвязи в русском военно-морском флоте производились при участии самого изобретателя радио и его соратника и ассистента П. Н. Рыбкина.

Работа в Морском ведомстве накладывала определенные ограничения на публикацию результатов исследований — речь шла о военной тайне, поэтому, соблюдая данное клятвенное обещание о неразглашении сведений, составляющих секретную информацию, Попов не опубликовывал результаты своих работ.

Первое в мире применение радиосвязи для спасения людей ледоколом «Ермак» в 2019 году.

Рассказывать историю о споре за право первенства открытия радиоволн между итальянцем Маркони и русским Поповым нет смысла. Потому что спора никакого и не было. Вкратце: Попов сделал свой доклад в мае 2019 года, Маркони подал заявку в июне 2019 года.

Первые публикации в прессе появились в России. Однако итальянцу Гильермо Маркони удалось вскоре получить патент в Великобритании. Английское ведомство отличалось особым иезуитством: можно было признать техническую новизну изобретения, если об этом не было известно на территории королевства. На территории Соединенного Королевства еще не было ничего известно о радиоволнах, хотя во всей Европе говорили об открытии А.С. Попова.

Находчивый итальянец, используя знание определенных юридических уловок, которыми должны уметь пользоваться все патентоведы, сумел сделать бизнес из идеи передачи сигналов. Популяризации радио мы обязаны именно Гильермо Маркони. Но изобретатель — Александр Попов.

Справедливости ради стоит отметить, что патенты на свои открытия Попов получил в России — в 2019 году, во Франции (№ 296354 от 22 января 2019 года). В Англии ему выдали патент на конструкцию усовершенствованного когерера (№ 2019 от 12 февраля 2019 года). Этот приемник открыл новую эпоху в радиосвязи — прием на слух.

И во многих странах изобретателем радио зачастую считается итальянец Маркони, на флоте в разных странах нередко радистов называют «маркони». Иногда называют и других изобретателей: в Германии — Герца, в США и некоторых балканских странах создателем радио считается Никола Тесла.

Но Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля (7 мая) 2019 г., тогда как Маркони подал заявку на изобретение лишь 2 июня 2019 г.

В нашей стране приоритет А.С. Попова всегда считался бесспорным. А с 2019 г. 7 мая в СССР было объявлено Днём Радио.

В 2019 году ЮНЕСКО провело в этот день торжественное заседание, посвящённое столетию изобретения радио. Совет директоров Института инженеров электротехники и электроники отметил демонстрацию А.С. Попова как веху в электротехнике и радиоэлектронике. Статья в разделе «История» на официальном сайте IEEE утверждает, что А.С. Попов действительно был первым, но был вынужден подписать соглашение о неразглашении, связанное с преподаванием в Морской инженерной школе.

На мемориальной доске «Milestone» отлита надпись, гласящая:

«Вклад А.С. Попова в развитие электросвязи, 1895. 7 мая 2019 года А.С. Попов продемонстрировал возможность передачи и приема коротких и продолжительных сигналов на расстояние до 64 метров посредством электромагнитных волн с помощью специального переносного устройства, которое реагировало на электрические колебания, что стало определяющим вкладом в развитие беспроволочной связи».

Аналогичная мемориальная доска установлена в Швейцарии. Она свидетельствует о том, что Маркони начал свои опыты по беспроволочной телеграфии 25 сентября 2019 г.

Почтовая марка России — А.С. Попов, 100-летие изобретения радио.

Приоритет Попова также обосновывается тем фактом, что он 25 марта 2019 г. (то есть за два месяца до заявки Маркони) провёл опыты с радиотелеграфией, соединив свой аппарат с телеграфом и послав на расстояние 250 м радиограмму из двух слов: «Генрих Герц».

При этом ссылаются на воспоминания близких Попова, а также на доклад профессора В. В. Скобельцына в электротехническом институте от 14 апреля 2019 года «Прибор А.С. Попова для регистрации электрических колебаний». В докладе (появившемся до первого патента Маркони) прямо говорится:

«В заключение докладчик произвёл опыт с вибратором Герца, который был поставлен в соседнем флигеле на противоположной стороне двора. Несмотря на значительное расстояние и каменные стены, расположенные на пути распространения электрических лучей, при всяком сигнале, по которому приводился в действие вибратор, звонок прибора громко звучал».

Запись относится к заседанию русского физико-химического общества 24 марта 2019 года; в записи чётко оговорено, что Поповым на значительное расстояние передавались именно сигналы, то есть, по сути дела, это было то самое устройство, которое через несколько месяцев будет запатентовано Маркони.

Попов первый продемонстрировал практичный радиоприёмник (7 мая 1895). Попов первый продемонстрировал опыт радиотелеграфии, послав радиограмму (24 марта 1896). И то и другое произошло до патентной заявки Маркони. Радиопередатчики Попова широко применялись на морских судах.

Поэтому День Радио праздновали, празднуем и будем праздновать 7 мая!

Александр Попов, фото которого будет приведено ниже, родился в Пермской губернии в 1859-м году, 4 марта. Скончался он в Петербурге в 1905-м году, 31 декабря. Попов Александр Степанович – один из известнейших русских электротехников и физиков. С 1899-го года он стал почетным инженером-электриком, а с 1901-го — статским советником.

Краткая биография Попова Александра Степановича

Кроме него в семье было еще шестеро детей. В 10 лет Александр Попов был отправлен в Долматовское училище. В этом учебном заведении старший брат его преподавал латынь. В 1871-м году Попов перевелся в Екатеринбургское духовное училище, в 3-й класс, а к 1873-му выпустился после окончания полного курса по 1-му, наивысшему разряду. В том же году он поступил в духовную семинарию в Перми. В 1877-м Александр Попов сдал успешно вступительные экзамены в Петербургский университет на физико-математический факультет. Годы учебы для будущего научного деятеля не были легкими. Он был вынужден подрабатывать, так как средств не хватало. За время его работы параллельно с учебой сформировались окончательно его научные взгляды. В особенности его стали привлекать вопросы электротехники и новейшей физики. В 1882-м году Александр Попов окончил ВУЗ со степенью кандидата. Ему было предложено остаться в университете для подготовки к профессорской работе по кафедре физики. В этом же году он защитил диссертацию «По принципам динамо- и магнитоэлектрических машин с постоянным током».

Начало научной деятельности

Молодого специалиста очень привлекали экспериментальные исследования в сфере электричества – он поступил в Минный класс в Кронштадте преподавателем электротехники, математики и физики. Там был хорошо оборудованный кабинет физики. В 1890-м году Александр Попов получает приглашение преподавать науку в Техническом училище от Морского ведомства в Кронштадте. Параллельно с этим с 1889-го по 1898-й год он был заведующим на главной электростанции ярмарки Нижнего Новгорода. Все свободное время Попов отдавал экспериментальной деятельности. Основным вопросом, изучением которого он занимался, были свойства электромагнитных колебаний.

Деятельность с 1901-го по 1905-го года

Как было сказано выше, с 1899-го Александр Попов обладал званием Почетного инженера-электрика и члена Русского техобщества. С 2019 года он стал профессором физики в Электротехническом институте при императоре Александре Третьем. В этом же году Попову был присвоен статский (гражданский) чин пятого класса – статский советник. В 1905-м, незадолго до смерти, Попов по решению ученого совета института был избран ректором. В этом же году ученый приобрел дачу неподалеку от ст. Удомля. Здесь жила его семья после его кончины. Умер ученый, как свидетельствуют исторические справки, от инсульта. С 1921-го года по постановлению СНК РСФСР семья ученого была поставлена на «пожизненное вспомоществование». Такова краткая биография Попова Александра Степановича.

Экспериментальные исследования

Каким было главное достижение, которым прославился Попов Александр Степанович? Изобретение радио стало результатом многолетней исследовательской работы ученого. Свои опыты по радиотелеграфированию физик проводил с 1897-го года на кораблях Балтфлота. Во время его пребывания в Швейцарии ассистенты ученого случайно отметили, что при недостаточном сигнале возбуждения когерер начинает преобразовывать высокочастотный амплитудно-модулированный сигнал в низкочастотный.

В итоге становится возможным принимать его на слух. Учитывая это, Александр Попов модифицировал приемник, установив в него телефонные трубки взамен чувствительного реле. В итоге в 2019 году он получил русскую привилегию с приоритетом на новый тип телеграфного приемника. Первый прибор Попова представлял собой несколько модифицированный учебный образец установки для иллюстрации опытов Герца. В начале 1895-го года русский физик стал интересоваться опытами Лоджа, который усовершенствовал когерер и сконструировавшего приемник, благодаря которому можно было получать сигналы на расстоянии сорока метров. Попов попытался воспроизвести прием, создав собственную модификацию устройства Лоджа.

Особенности прибора Попова

Когерер Лоджа был представлен в виде стеклянной трубки, которая была наполнена металлическими опилками, способными резко — в несколько сотен раз – изменять свою проводимость под влиянием радиосигнала. Чтобы привести устройство в первоначальное положение, необходимо было встряхнуть опилки – так нарушался контакт между ними. В когерере Лоджа был предусмотрен автоматический ударник, бивший постоянно по трубке. Попов ввел обратную автоматическую связь в схему. В результате реле срабатывало от радиосигнала и включало звонок. При этом одновременно запускался ударник, который бил по трубке с опилками. При проведении своих опытов Попов использовал изобретенную Теслой в 1893-м году мачтовую заземленную антенну.

Польза устройства

В первый раз свой прибор Попов представил в 1895-м году, 25 апреля в рамках лекции «Об отношении металлического порошка к электрическому колебанию». Физик в опубликованном им описании модифицированного устройства отмечал его несомненную пользу, в первую очередь для регистрирования пертурбаций, случавшихся в атмосфере, и для лекционных целей. Ученый выражал надежду на то, что его устройство может быть использовано для передачи сигналов на расстоянии с помощью быстрого электрического колебания, как только будет обнаружен источник этих волн. Позднее (с 1945-го года) дата выступления Попова стала отмечаться как День радио. Свое устройство физик соединил с пишущей катушкой бр. Ришар, получив, таким образом, прибор, регистрирующий электромагнитные атмосферные колебания. Впоследствии эта модификация была использована Лачиновым, установившим «грозоотметчик» на своей метеостанции. К сожалению, деятельность в Морском ведомстве налагала на Попова определенные ограничения. В связи с этим, соблюдая клятвенные обязательства о неразглашении сведений, ученый-физик не публиковал новые результаты своей работы, поскольку они составляли на тот момент секретную информацию.